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The linear response of the optical constants of Cu to a general strain is presented for the range 
1.5~ '"",~5.5 eV. The transitions X5 -+ Xl at 4.0 eV and Ep -+ Ll at 4.15 eV are identified. The deformation 
potentials a(Ep-L3upper)/ae=-(l.1±0.1) eV and a(L 1-Ep)/ae=-(9.6±1.5) eV with e=IlV/V, and 
aLt/acN.= - (72±12) eV with e",,= eN' = e .. , eu=ew=e.,=O for kll[111] are evaluated from the measure
ments. They are used to derive the volume coefficients of the Fermi energy, a (lnEF)/Oe = -1.1±0.3, and 
of the position of the d bands, a (lnEd)/ae= -1.2±0.5, with respect to rl. The measurements are consistent 
with the assumption that direct interband transitions dominate the absorption above 2 eV. 

INTRODUCTION 

APPLYING a shear strain to a single crystal re
duces its symmetry and may split formerly de

~enerate levels. In optical experiments, the first such 

I 
:plitting was observed accidentally in the investigation 
If the excitonic absorption of germanium. I- 3 The power 
Jf the method was soon recognized; it was used to study 
:he excitonic absorption of other crystals, e.g., CdTe 4 

IWd CU20 .5 The method was first applied to the con
:inuous interband absorption by studying the strain
~,duced change of the reflectance of Ge and Si.6.7 
'[adulation techniques were also used successfully.8-!O 
i'olycrystalline films of the noble metals were in
·;estigated.ll A preliminary version of the present paper 
,'as published elsewhere. I2 

According to the band-structure calculations of 
Cu,13•a direct, k-conserving interband transitions are 
~ossible for hw> 2 e V. These lead to a continuous 
!bsorption in contrast to the sharp excitonic structure 

• Work supported by the U. S. Air Force Office of Scientific 
t ~escarch, Contract No. AF 49(638)-1653 . 
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of solids mentioned above. However, the topology and 
the symmetry of the problem give rise to singularities 
in the joint density of states,15-17 which dominate the 
behavior of semiconductors and insulators in the region 
of the interband transitions. In metals, the modifica
tions of this structure due to the overlap of the Fermi 
energy with the electron bands might give even sharper 
singularities in the absorption. IS 

The basic virtue of the measurements to be discussed 
here is their ability to distinguish between singularities 
of different symmetry. The main difficulty in the 
analysis is that the "symmetry of a singularity" is 
quite frequently not well defined. For example, a 
structure in the absorption caused by an M 1 or an M 2 

type singularity ill the joint density of states is com
posed of transitions with k vectors terminating on the 
optical energy surfaces E(k) = E(M I) and E(k) = E(M2), 

respectively. These surfaces stretch through the Bril
louin zone, i.e., there is a whole range of transitions 
with different k vectors which contribute to the ob
served structure in the absorption. However, if the 
structure in the absorption is made up of transi tions 
with wave vectors confined to a region close to a 
symmetry point k. in k space, the structure will ap
proximately respond to a perturbation as if it were 
composed of transitions with k. only. We will refer 
to transitions of this kind as strongly localized transi
tions. Transitions arising from the MI and M2 type 
singularities mentioned above are only moderately 
localized around the corresponding saddlepoints, and 
some transitions connected with singularities caused 
by the Fermi energy are not localized at all . 

The experinlents reported here were done with a 
technique similar to the one used for the alkali halides. Io 

They give the linear response of the optical constants 
to an arbitrary strain for photon energies between 1.5 
and 5.5 eV. This information is used to determine the 
symmetry of strongly and moderately localized transi
tions; it also reveals which structure in the absorption 

15 L. Van Hove, Phys. Rev. 89, 1189 (1953) . 
11 J. C. Phillips, Phys. Rev. 104, 1263 (1956). 
17 D. Brust, Phys. Rev. 134, A1337 (1964). 
18 H. Ehrenreich and H. R. Philipp, Phys. Rev. 128, 1622 

(1962). 
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Ell 
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__ ---11,,.--1 bands =axes 

of rotation 

magnet 

resonance 

frequency 

. appr. 200Hz 

FIG.!. The mechanical oscillator. The extremal positions of the 
crystal are shown in the lower half of the figure. The oscillator is 
driven by an inhomogeneous ac magnetic field which acts on the 
small permanent magnets at the ends of the level arms. 

is due to nonlocalized transitions. In addition, it is 
used to determine the deformation potentials of the 
observed transitions. The consistency of the assign
ment deduced from experiment with the calculated 
electronic structure of eu is discussed. The eaect of a 
general strain on the electronic structure is treated 
theoretically. The results obtained here are compared 
with those deduced from other experiments (e.g., photo
emissionl9) and with theoretical calculations. 

EXPERIMENTAL METHOD 

Mechanical and Electronic Setup 

An ac bending of rectangular single crystalline bars 
(lX3X20 mm3) was used to produce an ac strain at 
the surface of the crystal. The motion of the crystal is 
sketched in the lower half of Fig. 1. The two axes of 
rotation near the ends of the crystal (lower half) are 
realized by thin bronze bands, soldered to the two 
clamps which hold the crystal (upper half). Two lever 
arms are attached to the clamps, carrying small 
permanent magnets at their ends. The driving forces 
acting on these magnets were produced by the in
homogeneous ac magnetic field of two electromagnets. 
The frequency of the current passing through the elec
tromagnets was tuned to the bending mode resonance 
frequency of the mechanical system. 

There are also counterweights attached to the 
clamps (omitted in Fig. 1 for sake of clarity), which 
balance the mass of the permanent magnet, the lever 
arm, and the clamp. After removing the sample, the 
bronze bands will be a main axis of the moment of 
inertia for each assembly (magnet, lever arm, clamp, 
counterweight) individually. Thus, no forces are 
transmitted through the bronze bands. Otherwise, 
these forces might give an unwanted wavelength 

II C. N. Berglund and W. E. Spicer, Phys. Rev. 136, Al030; 
136, AI044 (1964); Colloquium 011 tile Optica.! Properties .and the 
Electronic Struc!ure of M ctals alia. Alloys, Pazrs, 1965, edited by 
F. Abell$ (r-;orth-Holland Publishing Co., Amsterdam, 1966), 
pp. 285 and 296. 

modulation by coupling the mechanical vibration to t!.( 
monochromator or give acoustical feedback by coup!i: . 
the vibration to the photomultiplier. 

The reflected-light intensity, slightly modulateu L 
the strain-induced change of the reflectance, was c: 
tected by a photomultiplier with quartz window (Cd I 
9558Q, Trialkali). The dc current of the multiplier c' . 
not change when the wavelength setting of the IllOL, 

chromator was changed. This was achieved by using .. 
electronic feedback control of the photomullipE,: 
Thus the ac component of the anode current of l ~ 
multiplier was proportional to tlR/ R, the relali .. 
change of the reflectance. This component was n:L.. 
sured as a function of wavelength by means of a ph:\. 
sensitive detector and displayed on an x-y recordt ' 
The linearity of the system was checked with a phI) ', 
diode; the ac to dc ratio was found to be corret:t '. ,. 
within ±3%. 

Strain Measurement 

The strain at the surface of the sample will be l: 
same as that of a closed ring, formed by joining t! 
ends of a previously straight bar with rectangular cr. 
section, as shown in Fig. ~. This is true if the infl ll rl. ' 
of the clamps can be neglected. The cross section of l: 
ring will generally be no longer rectangular. Therr ;! ;, 

two limiting cases for the stress tensor (J and tbe ~ lr •. · 
tensor e at the middle line of the surface of the ri: . 
One limit is approached if the radius PI and the thi. '. 
ness d of the ring are large and the width b is Sill ." 

In this case, the stress tensor and the strain tensor t ~:. 
the form 

[
0 1 [eu' 1 (J' = ° ,; e' = ell-v',' ( I 

{joz e .. 

vVe tried to approach this limit in our measurcll ll"!: 
The quantitative conditions for the validity of E(r'· ! 
were found experimentally by measuring PI and p: 

bent aluminum bars of various thicknesses and w:u" 
The strain at the middle part of the surface is ;:iH 
by 'e . ." = d/2pI and 'ellu" = d/2p2. On the other 11 ., ' I 

the ratio 'e z .' / ellu" can be calculated using the sl r, 
strain relation and the form of the stress tensor. C;:· . 

X' 

FIG. 2. A closed ring, formed by joining the ends of a I'rc· . . 
stmigh.t bar with rectangular cross section. The strc~5 a XI . 1< ! 
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·trCSS tensor given by (1), we found the agreement 
.~,:ccn the measured and calculated ratio to. be better 
~~1 3%, provided the condition le • .'15:.4d2/Q2 was 

:i lled
o

• In the optical measurements on Cu crystals, 
~'ical numbers were le • .'1 =4Xlo-4

, 4d2/ b2=0.4. 
':us lhe above condition was always met. 
. in the actual measurements, the crystal forms a 

.111 segment of the ring shown in Fig. 2; the distor
~,s produced by the clamps cannot always be ne

:(lcd. Measurements of PI and P2 of large aluminum 
o: ~; clamped at the ends in a way similar to that 

JIm in Fig. 1 were carried out. The difference be-
. ,'cn the calculated and the measured Ie:.' / ell / I at 
.~ midpoint of the sample was again below 3%, pro

. !cd the free length of the sample (Fig. 1) was at 
· ..:i t twice its width. Typical values for the Cu crystals 

..:<'<1 in the optical experiments are 1= 10 mm, b=3 mm, 
e., this condition was also fulfilled. 
Figure 3 shows the arrangement to determine the 

,mponent ez/ of the strain teDsor by measurement of 
·~c focal length of the cylindrical mirror, formed by 
~c bent sample. The sample was oscillating, and the 
'l'qucncy of the stroboscope was tuned close to the 
rionance frequency of the sample. The distance be
leen the sample and the image of the slit changed 
"riodically with the difference frequency w(strobo
':\lpe)- w(sarnple). The amplitude of the strain at the 
'Jfiaee is given by 

eu ' = 6ad(2ao)-2{ 1 + [1 +(6a/ ao)2JI/2)-!, (2) 

,here ao is the position of the image for zero strain and 
.lIZ is the difference in the position for maximum ex
:ension and compression. The accuracy of this method 
:~creases with decreasing distance between lens and 
\lrnple. It was about ±5% for the geometry used 
~ere. The components e",.,', eJ/v' of the strain tensor 
l :e expressed in terms of the measured component e • .' 
~y means of the stress-strain relation using the form 
I) of the stress tensor. The elastic constants are taken 

::001 Ref. 20. Because of the sample dimensions 
,hosen, the errors in eu ' and eJ// due to deviations 
::001 (1) are smaller than 3%. During the optical mea-

slit -oj o2krsamPIe __ -r--+-..u1' 

~::::::t:---J 00 ___ • 

strob~f -Ji£[::!:::H:! 

FIG. 3. The optical design which was used to determine the focal 
length of the cylindrical mirror formed by the bent sample. 
~ 

• 10 Americatl 1mtitllte of Physics Handbook (McGraw-Hili Book 
1 0., New York, 1957), Chap: 2, p. 56. 
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002 scale. -000- : present paper 
A AA : Ehrenreich and Philipp 

o 00 : Beaglehole 

2 
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Photon Energy 

FIG. 4. The reflectance and <2, the imaginary part of the dielec
tric constant of Cu at room temperature. The values determined 
by Ehrenreich and Phillipp (see Ref. 18) and by BeaRJehole (see 
Ref. 22) are only shown if they differ by more than 2'70 from the 
values given in the present paper. 

surement, the strain amplitude and phase was monitored 
by a pickup capacitor, consisting of one of the magnets 
at the ends of the lever arms (Fig. 1), moving against 
a fixed, insulated piece of sheet metal. 

Sample Preparation 

The orientation of the samples cut from a single crys
tal was determined to within ±1° using Laue diagrams. 
The surface preparation consisted of grinding, mechan
ically polishing, and electropolishing2! the sample. The 
electropolishing was terminated by quickly rinsing in 
deionized water and alcohol. After taking the sample 
from the alcohol bath, the thin film of alcohol at the 
surface was immediately removed by a warm stream 
of air. The reflectance of a freshly prepared sample, 
measured within 10 min after the electropolishing, is 
given in Fig. 4. The growth of an o;,.ide layer at the 
surface of the sample is responsible for the observed 
decrease in the reflectance with time. This decrease is 
most pronounced in the ultraviolet. We observed 
a 1% decrease at 5.S eV within 1 h after the 
electropolishing. 

Although the reflectance of our samples was measured 
in air, it deviates less than 1% from the values deter
mined by Beaglehole,22 which were measured in a 
high vacuum after reducing the oxide layer at the sur
face. The only exception is the region around 4.3 eV. 
The resolution of the vacuum monochromator used by 
Beaglehole was not high enough to resolve finer details 
of the minimum at that energy23 (see Fig. 4) . Thus the 
oxide layer on our sample modifies the reflectance not 
more than 1% between 1.5 and 5.5 eV. The reflectance 
given by Ehrenreich and Philipp!S is slightly lower 

21 W. J. Tegart, The Electrolytic a/Ill Chemical Polishing of 
Metals (Pergamon Prcss, Inc., New York, 1959), 2nd cd. 

22 D. Beaglchole, Proc. Phys. Soc. (London) 85, 1007 (1965) . 
13 D. lleagtchole (private communication). 
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h~~ 
I cathode of photomultiplier 

dynodes 

FIG. 5. The optical path of the beam behind the monochromator. 

than the one we found, indicating a slightly thicker 
oxide layer on their sample (Fig. 4). 

Figure 4 also contains E2, the imaginary part of the 
dielectric constant. It was obtained from a Kramers
Kronig analysis. Between 5.5 and 25 eV, Beaglehole's 
reBectance values were used. Above 25 eV, the slope of 
the reBectance was adjusted to reproduce the absolute 
magnitude of E2 given by Beaglehole. 22 The slope of the 
edge in E2(ItW) at 4.3 eV is approximately the same for 
the function reported here and the one reported by 
Ehrenreich and Philipp. The edge determined by 
Beaglehole is somewhat Batter because of the less de
tailed structure in the reBectance at this energy. 

Optical Design and Error Signal 

A major difficulty peculiar to modulation techniques 
such as described here and elsewhere8 •9•1l arises from 
error signals which might, for example, be generated by 
the mechanical motion of the crystal. Such an error 
signal is difficult to separate from the true signal, be
cause both have the same frequency and phase. 

In designing the optical path behind the mono
chromator, we tried to minimize such error signals. One 
potential source . of an unwanted intensity modulation 
is the large inhomogeneity of the photocathode, which 
tends to convert small lateral motions of the light 
beam into intensity modulations. The optical setup is 
shown in Fig. 5. The beam was focused on the sample 
and on the semitransparent cathode of the multiplier. 
The light spot on the cathode is the image of the cor
responding point on the sample. It will not change its 
position, although the reflected beam might sweep 
over the toroidal mirror because of a motion of the 
sample or change its solid angle because of a change in 
the curvature of the sample. However; part of the light 
is transmitted by the cathode. It will partly reach the 
cathode again, being scattered by the dynodes. These 
scattered rays move slightly with respect to the cathode. 
They were found to be responsible for a substantial 
error signal, which was strongly wavelength-dependent 
owing to the wavelength-dependent transmission of the 

cathode. This error signal was considerably reduced Ir.
placing a scattering plate 30 mrn in front of the cathod~ 
The plate consisted of a 0.1-mrn-thick quartz disk' 
roughened on both sides with mesh-lOOO carborundum' 
The intensity loss due to this plate was about 40o/c a; 
5.5 eV and less at lower energies. 0 

As discussed above, one source of the error sign~. l 
will be the change of the angle cp between the incidcn' 
and the reflected beam due to the motion of the sampk 
This error signal was minimized by shifting the samp:C 
perpendicular to the beam in such a way that the bcan 
was reBected at the dynamical center of the sample. J 11 

this position cp no longer changes, although the cryst~l 
is vibrating (Fig. 1). During this adjustment the et'ru: 
signal itself served to monitor the position of the li"'h, 
spot on the sample with respect to the dynamical center. 
It was drastically enhanced for that purpose by maskin,; 
down part of the reBected beam. 

In addition to the sources of the error signal dis
cussed above, the small motion of the sample nornd 
to its surface needs to be considered. This will easih 
produce an intensity modulation if the optical quali l:, 
of the surface is not excellent. The freshly electru, 
polished surfaces were of high perfection; they did Il O: 

show any trace of light scattered at the surface. Thl 
measurements which will be discussed here were carri t:,1 
out within 2 h after the electropolishing. They con
tained an error signal of only 2% of the maximu i, 

signal. About five days after the electropolishing ollr 
could see some weak scattering of light at the surfar,' . 
probably due to an oxide layer of considerably largl'~ 
thickness. The error signal was then of the same ord t:: 
of magnitude as the true signal, i.e., it had increasl ! 
by about a factor of 50, compared to the one j l., 

mediately after the electropolishing. 
The response of the multiplier to small ac magncl: ' 

fields (as produced by the driving coils) is anolh" 
source of error signal. An effective magnetic shiel, ! 
ing proved to be essential for the success of Ol:~ 
measurements. 

Optical Measurements 

The reflectance was measured at 4.50 off normal it. 
cidence. The difference between near normal and n .. : 
mal incidence reflectance will be neglected in t! , 
analysis. 

The reflectance of a bent sample contains tll'O c,·· 
tributions. One comes from the discontinuity of E, \ 

complex dielectric constant at the surface. This COl: 

tribution is identical to that of a sample with hon' ,. 
geneous strain equal to the strain at the surface of l \ 
sample. Another contribution is due to the small \" :! ~: ' 
tion of E, caused by the variation of the strain in t 1 

sample in the direction perpendicular to the su rf. \" 
The second contribution is normally several orckr, ' ' 
magnitude smaller than the first one, provided 11 , 

change of E over one wavelength is small compared ' , 

.. ---
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TABLE I. Definition of the piezo-optical constants, 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~== 

Strain tensor Type of strain Stress axis z' 
A E2 with respect 

to x', y', z Components t.E2 and t.R/R -(~I o~ 0) ~ e/3 Hydrostatic None (8 0 
DAE2 

t.E2= !(WIl+2WJ2)e 
1 t.R/R= l(QIl+2QJ2)e 
0 

(~ ~ })e.: 
I 1 0 

Trigonal [111J (g~i 0 

t211 ) 

t.E2"= -2t.E21=4W(4e •• 
AE21 t.R/RIl = -2t.R/Rl=4Q .. e. z 

0 

(-6 -~ 8)en 
001 

Tetragonal [001] ( g'21 
0 tE211 ) 

t.E2" = -2t.E21= (Wll - W1z)e" 
AEzl t.R/RIl = -2t.R/Rl= (QIl-Q12)e .. 
0 

-~~====================================================~ 

. ~ strain-induced change of E at the surface. This 
~dition was always fulfilled in our measurements. 

~1e second contribution will be neglected here. 
The phase-sensitive detector was locked to the 

.ndamental frequency of the vibration. Thus, only 
~.lf1ges of the reflectance proportional to odd powcrs of 

"rain were detected. Tuning to twice the frequency 
.hich should pick up mostly the quadratic effect pro
:~Lcd a signal barely above the noise. Thus, only 
~anges linear in the strain components were detected 

I 1 our measurements. 

EXPERIMENTAL RESULTS 

Symmetry Relations 

The optical properties of a solid are determined by 
'~c complex second-rank dielectric tensor t, which re
:uces to the unit tensor times the complex dielectric 
.onstant for cubic crystals, i.e., cubic crystals are 
plically isotropic. A general strain applied to these 

.rystals destroys the isotropy. Restricting the discussion 
:0 changes linear in the strain components, we may 
;, rite 

(3) 

I'U has the point symmetry Oh. In this case, Eq. (3) 
;,arallels the stress-strain relation (At replaces the 
;tress tensor, W the stiffness tensor), i.e., the fourth
rank piezo-optical tensor W has three independent 
complex elements.8.9·11 We adopt the matrix notation 
used for the stress-strain relation (see, e.g., Ref. 24) . 
Table I shows the resulting relations for £2, the imagi
nary part of the dielectric tensor. (W 44 defined in Ref. 11 
:; four times that of Table L Using the corresponding 
definition of the stiffness constant24 might help to avoid 
~'J nfusion, which frequently arose at that point in the 
j'ast.) Selecting special geometries, namely the stress 
lxis, the normal to the reflecting plane, and the polariza
:ion of the light parallel to the principal axes of At 
lC:J.ds t08 ,9.11 

D.R= (aRI aEl)6.El+ caRl aE2)6.E2, (4) 

',\'here 6.El and 6.E2 are the appropriate eigenvalues of --. "C. Kittel, InlrodflCtion to Solid Siale Physics Uohn Wiley & 
~ns, Inc., New York, 1956), 2nd ed., pp. 87, 89, and 91. 

Atl and At2. Thus we can define quantities Qi; (similar 
to Wi;) that describe the relative change of the reflect
ance. The definition of Qi; is also given in Table 1. 

Measurements and Piezo-Optical Constants 

Figure 6 contains the measurements of the relative 
change of the reflectance per strain along the stress 
axis for three different samples, the stress axes being 
parallel to [OOlJ, [111J, and [110J, respectively. The 
surface of the samples was the (110) plane in all cases. 
For each stress direction, the reflectance for light 
polarized parallel and perpendicular to the stress a}..-is 
is given. The independent information contained in 
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FIG. 6. The relative change of the reflectance per unit strain 
along the stress axis at room temperature for Cu crystals with 
the stress !,Ixes [001], [111], and Lll0], and with the reflecting 
surface (110). The curves are given for light, plane polarized 
parallel and perpendicular to the stress axes. 
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FIG. 7. The relative change of the reflectance of Cu per strain 
for a change in volume (QII+2QI2) and for trigonal (Q .. ) and 
tetragonal (QlI-Q.!) shear strain, evaluated from the six func
tions of Fig. 6 as indicated in Table II. The definition of the 
functions Qij is gil'en in Table I. The room·temperature reflect
ance of Cu is also included. 

these six measured functions is that of three functions 
only, e.g., Qll+2Q12, Q44, and Qu-Q12 as given in 
Table 1. There are in fact two measurements for each 
of the independent functions. Table II lists the mea
surements that were used to determine the Qi;; Fig. 7 
gives the three functions, together with the reflectance 
for zero strain. The deviations between points belong
ing to the same function but originating from different 
measurements is small; the error signal per strain along 
the stress axis, estimated from the remaining devia
tions is approximately ±O.2. This is about 2% of the 
maximum signal observed which is Qu-f- 2Q12 = 9 at 
/zw=4.1S eV. 

Figure 8 contains the change of £2 resulting from the 
three independent symmetry distortions, expressed in 
terms of Wi; (see Table I). The function E2 for zero 
strain is also included. The quantities W;; were obtained 
from a Kramers-Kronig analysis of the Qi;' The values 
for Q.; for /zw<1.5 eV and /tw>S.S eV are not known. 
The functions Qi; are zero between 2 and 1.5 eV. The 
contribution of the free carrier absorption to Qi; re
mains small further in the infrared. l1 We therefore t1~ed 
Qi;=O as the extrapolation below 1.S eV. The functions 
Qij are small at 5.S eV, but they are not zero. There are 
probably nonzero values further in the ultraviolet. In 
doing the Kramers-Kronig transform, we joined the 

TABLE II. Reduction of th~ measu.red relative change of 
reflectance to the plezo-opllcal constants Q'j. 

Qii Determined from 
Stress Point . 
axis Fig ; 

QII+2Q.! 6R/RII+26R/Rl [111J Circ:-;;' 
6R/RJI+26R/Rl [OOlJ Stili": 

Q .. 6R/RJI-6R/Rl [1I1J Cire;, 
26R/RJI+6R/61 and QII+2Q,2 [110J Squ:u 

QII-QU 6R/RJI-6R/Rl [OOIJ Circle 
6R/Rl and QII+2Q ,2 [110J Squa: \ 

functions Qi; smoothly with the zero line for Itw> S. - l', 

In or~er t? evalua te the error introduced by t: 
approxunatIOn, another Kramers-Kronig transform '. 
done on Qll+2Q12. This time the function I\'a$ l 

trapolated to the minimum Qll+2Q12= -2 at 6 c\ ' .(' 
joined smoothly with the zero line above 6.S c\·. 'I . 
deviation in Wll+2TV12 for the two extrapolation-
S at S.S eV; this is 6 % of the maximum value (81..:; ., ' 
4.3 eV). The weighting function in the Kramers-:KrrJ: .. 
integral assures that the error due to the extrapola t: 
decreases with decreasing energy. The error bars tt, 

5:5 eVJn Fig. 8 give the deviation due to the eXlr:l! /<" . 
tIOn dlscussed above, whereas the ones at 3.5 e\' ;,:: .. 
the uncertainty produced by the error signal in ~R ; 
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FIG. 8. The chang~ of the imaginary part of the diclcct! ic , 
stant of Cu per stram for a change in volume (lVlI+211 I ' • 

for ~rig0l!-al (W.,) and tetragonal (WlI-Wd shear str~'" , 
the Imagmary part of the dielectric constant. The dc'ir"l~ , 
the functions rvij is gi ven in Table I. 
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lcaSllred relative change of 
,,-optical constants Qij. 

I '::::::::0.. 

. from 
Stress Point, 
axis Fig, ; 

[111J 
---.. 

Circlci 
[OOlJ Squa:o 

[111J Circlt. 
[110J Squar, 

[OOlJ Circl~ 
I ~ [110J Squar:, 

=:: 

the zcro line for liw> 5.5 t 
. error introduced by t: 
lmers-Kronig transform v. 
time the function was ( 
Qll+2Q12= -2 at 6 eV a: 
ero line above 6.5 eV. T 
r the two extrapolations 
one maximum value (81.5 . 
orion in the Kramers-Kror. 
or due to the extrapolati 

_ncrgy. The error bars TIe 

.; ation due to the extrapol 
<!as the ones at 3.5 eV gi: 
y the error signal in tlR, i 

. u; Ul. Symmetry rules for the optical transitions, considering 
the splitting of the k degeneracy only. 

~~~====~============================= 
A or L transitions 
A or X transitions 
All transitions except A, L, A, X 

~~~================================== 

'-C spectral resolution given in Figs. 6-8 is the half
. ,Jlh of atomic mercury lines, as recorded with our 
; :ical system. 

THEORETICAL ANALYSIS 

Symmetry Rules for Optical Transitions 

Throughout the theoretical analysis we assume that 
t are dealing with direct, k-conserving interband 
'!nsitions, i.e., that E2 is dominated by this process. 
:c exclude the region below 2 eV where free carrier 
-oorption is important. 
There are two types of degeneracies in a solid, namely, 

~c orbital degeneracy (e.g., La, twofold neglecting 
. in) and the k degeneracy (e.g., the star of kL contains 
-ur equivalent vectors; any L level will be fourfold 
, '~enerate with respect to k). Most of the orbital 
i"~eneracy is lifted already by spin-orbit interaction. 
': we include the effect of strain and assume that the 
,enter of gravity of the levels under consideration is 
:ot changed by the strain, the total splitting will be 
:iren by25 

(5) 

fn Cu, the spin -orbit splitting is about ten times the 
.?litting produced by strain (the strain applied was 
lbout 5X 10--4). This means that the change of tJ. is 

FIG. 9. The hand structure of Cu as calculated by Segall (see 

I ~cf. 13) and Burdick (see Ref. 14) using Chodorow's potential 
, ';ee. Ref. 26). The dashed curves are the free-electron eigenvalues. 
lfia~y part of the clielectric co .... IS the Fermi energy as calculated by Segall and Burdick and 
'!!e In volume (Wu +2Wu ) ar . r· the Fermi energy calcula ted for the free-clectron eigenvalues 
-J . (JV,,-W,~) shear strain ar f the sp bands. 
lne constant. The definition ' 
l. 

Ii j. Goroff and L. Kleinman, Phys. Rev. 132. 1080 (1963). 

(eV)2 
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eV 

FIG. 10. The insert (a) sho\\"s the change of the joint density of 
states in the neighborhood of an M , singularity produced by a 
rigid energy shift of the joint density of states; in part (b) of the 
figure the experimental function (WI1- W I2) (liw )! is plotted. 

second order in the strain and thus not detected in our 
measurements. We therefore must exclude the effect 
of a change of the spin-orbit splitting from our 
considerations. 

Four effects may contribute to the observed tJ.E2 in 
Cu, namely, the, lifting of the k degeneracy, changes in 
the oscillator strength, changes in the joint density of 
states, and the splitting of the orbital degeneracy not 
lifted by spin-orbit interaction. The lifting of the k 
degeneracy normally is the most important effect. We 
confine the discussion to this effect for the time being. 
The symmetry rules which follow are summarized in 
Table III. They were derived by considering the effect 
of trigonal and tetragonal shear strain on the set of 
originally equivalent k vectors (the star of k). These 
rules depend only on the symmetry of the crystal for 
zero strain and on the symmetry of the distortion. 
Exceptions from these rules can arise only from ac
cidental degeneracy, e.g., an L and an X transition at 
the same energy will produce a nonzero change in E2 

for both trigonal and tetragonal shear strain. It is 
largely due to these simple symmetry rules that the 
effect of shear strain on the optical constants is so 
powerful a method in analyzing the electronic structure 
of crystals. 

Using Table III and the experimental results given 
in Fig. 8, we expect the edge at 2.1 eV to be caused by 
nonlocalized transitions, because shear strain gives 
only very small tlE2 without pronounced symmetry 
behavior. Going from 2 to 4 eV, a tJ. or X transition 
must become increasingly important. A singularity in 
the joint density of states connected with these transi
tions is likely to occur at about 4.0 eV corresponding 
to the minimum in JYn - W12 (see Fig. 8). Finally, there 
must be a pronounced singularity connected with A or L 
transitions at 4.3 eV, which is responsible for the 
large maximum in W 44. 
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Only volume enclosed 
by necks contributes 

FIG. 11. The energy contours of the surface E(k)=EF, L2', 
L 1- Lt', and L1- EF around the L point in a plane containing the 
A axis (left-hand part of the figure) j the joint density of states 
near an M2 singularity and the joint density of states at the same 
energy, but modified by the Fermi energy (right-hand part). 

Comparison Experiment-Band Structure 

The energy bands of Cu, as calculated by Segall13 

and Burdick14 using Chodorow's26 potential, are shown 
in Fig. 9. The free-electron eigenvalues are also in
dicated, together with the Fermi energy for the empty 
and the actual lattice. We refer to this band structure 
in the following. 

The 2.1-eV edge in E2 is known to be due to transi
tions from the top of the d bands to the Fermi surface 
(FS).1s,27 The experimentally observed energy is well 
reproduced by the E(k). These transitions will start 
at Q near L, but at slightly higher energies various 
parts of the Brillouin zone (BZ) will contribute. This is 
consistent with the observed lack of response to shear 
strain. 

The only transition at about 4 eV with k parallel to 
[OOlJ which is connected with a singularity in the joint 
density of states is X 5 ~ X 4'. The energy difference is 
4.0 eV, which is 0.1 eV larger than the position of the 
minimum in W n -W12• The structure at 4.3 eV must 
be due to transitions near L, since there are no A transi
tions with comparable energies, The FS ~ Ll transi
tion is closest in energy, although the transitions 
L31~ FS and Lld ~ FS are also not far removed (the 
superscripts Z= lower and ze= upper distinguished the 
two L3 levels in the d bands). 

Line-Shape Analysis 

The X5~X/ transition is related to an Ml critical 
point (c.p.) in the joint density of states. The contribu
tions at lower energies, originating from .:\5 ~ .:\1, are 
truncated by the FS below 2.1 eV. The contributions 
J AX to the total joint density of states J are shown 
schematically in Fig. 10(a). The change in J produced 
by a rigid shift in energy is shown in the lower part. 
For constant matrix elements, J will be proportional 

!& M. Chodorow, Phys. Rev. 55, 675 (1939) j Ph,D. thesis, 
Massachusets Institute of Technology, 1939 (unpublished). 

27 B. R. Cooper, H. Ehrenreich, and H. R. Philipp, Phys, Rev. 
138, A494 (1965). 

to (hw)2 E2 .28 Even for changing matrix elemenls " 
expect (hW)2E2 to follow more closely the actual (: 
pendence of J than E2 itself. Figure lOeb) gives ,:, 
function (hW)2(Wn - W12), which is to be compared ;':, 
the predicted change of Fig. 10(a). The agre{;m, 
shows that the functional dependence of Wu - W I: 

consistent with that predicted by the above assignlllL: 
Considering the 4.3 eV structure in W u , we l :~ 

compare E2 and J directly, because the structure 
confined to a narrow energy region. The main diffcrl"i. 
between the Dl~ FS (Ml c.p.) and the FS ~ Ll tra! 
tions (M2 c.p,) is the way the original contributions 
the joint density of states are truncated by the F " 1 

Fig. 11, the lines of constant energy are shown for, 
L 2' band and for the difference L 1- L 2' in a plane (" 
taining the A axis. The joint density of states arVI" 
the M2 c.p. is modified as shown in Fig. 11. The encr 
difference EN= E F - L2' is small compared to L1- } , 

(the symmetry labels such as Ll are also used to dCIl', 
the corresponding eigenvalues for typographical c, 
venience). In this case, the variation of J in the rc~i 
L 1-EF 5.hw5.L1-L2' is given by 

J(JIW) = 47rQ(27r)-311lI11/2ml(hw- L1+ EF)l/2. 

In the derivation of Eq. (6) the neck was approxillu:. 
by a cylinder. The slope of J as given by Eq. (6) 
largest for Izw slightly larger than L 1-EF • The .11\ 
at Itw= L 1-EF will be finite because of lifetime bro:u i 
ing. The largest values of Wi; will thus occur at '. 
slightly larger than L1-EF , provided Wi; is caused: 
an energy shift of the edge in E2. Figure 11 and Eq, \ 
show that the FS ~ Ll transitions are strongly 10c:1li ' 
around the L point; all k vectors terminate in a rl':':: 
enclosed by the neck. . 

The k vectors of transitions Ld~ FS ternli l, 
outside the neck, i.e., these transitions are not 10c:1F ' 
According to Table III, we expect a change in t : ' 

both trigonal and tetragonal shear strain, and we l" . 
this change to be small. The el\.-periments show :t \. 

large W 44• The small Wu - W12 at the same enl' r;.:: 
probably left from the X5 ~ X4' transitions nC:1r 
(this is the accidental degeneracy mentioned al h", 

Thus the structure at 4.3 eV is most probably dt< 
the strongly localized FS ~ Ll transitions. 

The values of the square of the momentum nl'\' 
elements M for the transitions of interest herl', 
calculated by Mueller,29 are given in Table 1\', 'I 
oscillator strength for the L 2' ~ Ll transition is I 

larger than that for transitions originating from d 1 

states. In fact, Mueller and Phillips29 found that ;d 
40% of the total E2 around 4.5 eV is due to the t 

duction-band-conduction-band transitions. The ;ll " 

value might be somewhat lower due to lifetime hr' 
ening, which tends to reduce the height of the ,:I' 
structure in E2, originating from these transitions (l 

28 M, H. Cohen, Phil. Mag. 3, 762 (1958). 
21 F. M. Mueller and J. C. Phillips, Phys. Rev. 157, GOO (J ' 
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TABLE IV. Transition matrix elements in (Ry) 
for selected transitions. 

~:ln;ition' L2'-.L1 L1d-. Lt' Ll-.L2' X 5 -.X/ 

~/'II .. , 3.17 0.533 0.D15 0.250 

=-Olatrix ~lements are calculated using the eigenvalues given in 
t~.Ti~· [F. M. Mueller (private communication)]. . 

11. From the experimental E2 we :stimate a t?tal 
tribution of about 30%, extrapolatmg the contnbu-

~: of the background below 4.1 eV to about 4.65 eV. 
7::e high percentage of L 2' -7 LI transitions as calcu
<txl from theory is consistent with the pronounced 

, Ire in the e:X"Perimental EZ and with the large W 44 as 
';'11. This leads agaui to the conclusion that the ob
,:\'cd structure in EZ and tlE2 at 4.3 eV is caused by the 
: 5 ~ L1 transition. . 

Another striking feature of the functions W ij IS the 
15tly different magnitude of. W 44 and TVIl - ~¥1.2' ~he 

-:aximum tlE2 observed for tngonal shear stram IS nme 
':rncs the corresponding value for tetragonal shear 
<rain (the amount of the strain being the same). This is 
,Jrtly due to the differeilt degree of local~ation in.k 
",1ce discussed above and partly to the dlfference ill 

~c oscillator strength (Table IV). The small oscillator 
:rcngth for X 5 -7 X 4' as compared with the one for 

:. :' -. LI suggests that there is no pronounced structure 
EZ around 4.0 eV, and indeed the el>"Perimental curve 

i nearly flat in this region. However, we believe to have 
'r:;olved a tiny hump in our room-temperature measure
-.ents of E2, as shown in Fig. 12. The reflectance at 
:'luid He temperaturesao shows a well-resolved structure 
.t about the same energy. The transition does show up 
.!carlyas a minimum in TV u- TV 12 at room temperature. 

The hydrostatic change (Wu +2W12) and the change 
':i th trigonal shear strain (W 44) have the same shape 
":tween 4 and 4.5 eV. The position of the maximum is 
i.3 eV in both cases. This suggests that both effects 
.re due to the FS -7 LI tra.nsition. The two functions 
~uTer between 4.5 and 5 eV, where W ll+2W12 exhibits 

1:\ additional shoulder around 4.8 eV, whereas W 44 

:pproaches zero rapidly. This behavior can be ex
:.\ained assunling transitions from the bottom of the d 
',ands to the FS. As in the case of the 2.1-eV edge (where 
'he top of the d bands provides the initial states), these 
:ransitions originate from general points of the BZ. 
rh is explains the lack of response to shear strain. The 
. ransitions will of course change under hydrostatic 
. rain. The situation is equivalent to the one at the 
!: l·eV edge, where only hydrostatic strain produces a 
<:; nificant change in E2. 

Experimental Deformation Potentials 

The assignment of the structure observed in W ii 

.Inc.l E2 has been established in the preceding sections. 
rhis information can be used to calculate the deforma· --10 M. A. Biondi and J. A. Rayne, Phys. Rev. 115, 1522 (1959), 

5.4--~----Y-----r----' 

5.0 

cS 
4,6 

4.2 

3.5 4.0 
Photon Energy 

4.5 eV 

FIG. 12. A blow·up of the imaginary part of the ?ielectric 
constant of Cu at room temperature around 4 eV, showmg weak 
structure slightly below 4 eV. The slope of the edge at 4.3 eV 
and the slope of the background which wer~ ~sed to calc.ulate the 
deformation potentials of the EF --> L1 transition are also mcluded. 

tion potentials of the corresponding transitions from 
the experiments, i.e., the difference in the deformation 
potentials of the final and the initial state. Additional 
knowledge is required to do so, namely, the slope 
dE2/d(hw) of that part of E2 which is responsible for 
the observed structure in W ij and the selection rules 
(required for the shear-strain coefficients only). Further
more, it must be possible to separate that part of W ii 
which is due to a change of the energy levels from the 
ones due to modifications of the transition matrix ele
ments M and of the density of states 1. 

The slope of the edge at 2.1 eV is large; modifications 
due to a background of transitions other than Lau -7 FS 
(e.g., free carrier absorption) will be small. The selection 
rules are not needed because only hydrostatic strain 
produces a pronounced change in E2. The changes in M 
and 1 produced by a hydrostatic strain will be much 
smaller than the ones produced by shear strain, in 
which case they are required by symmetry.7 Only 
W ll+2W12 is large at this edge, which shows that 
changes of M and J contribute very little to Wll+2W12• 

The deformation potential will be given quite ac
curately by the maximum value of W ll+2W12 and 
by the uncorrected slope of E2. 

As discussed above, the 2.1-eV edge is due to non
localized transitions; the transitions with lowest energy 
have k vectors terminating just outside the neck, but at 
slightly higher energies transitions with k vectors 
located in other parts of the BZ will contribute: The 
deformation potential determined from the energy 
shift of the edge will be an average over the deforma
tion potentials of all transitions which contribute. 
However, the top of the d bands is rather flat, particu
larly the portion La"-Q+, and it will remain flat if 
the volume of the crystal is changed. Thus the deforma
tion potentials of transitions contributing to the edge 
differ only slightly from each other. We therefore no 
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TABLE V. Matrix elements and strain coefficient of matrix elements which were used to calculate the deformation potentials at L. 

Orthogonali ty 
matrix element 

Tight-binding 
integrals 

cr= -0.332 eV 
,.-=+0.180 eV 
8=-0.027 eV 

RiJ(lncr)/iJR= -S.5b 

RiJ(l07r)/aR= -6.9 
RiJ(lno)/iJR= -8.0 

Pseudopotential 

VIl1=0.29 eV 

iJVm/iJev.= -3.85 eVa 
iJVlII/iJc= -0.93 eVe 

Hybridization 

d 

Zero of d 
bands above 1'1 

e 

• The strain tensor for trigonal distortion is given in Table 1. b R Is the nearest· neighbor distance. • e = AVIV Is the relative change of the Yolu r.., 
d See Text and Figs. 13 and 14. • See Table VII. 

longer distinguish between the energy shift of the 2.1-eV 
edge and the change of the Ep - La'" separation. The nu
merical value is a(Ep-Ls")/ae= -(1.1±0.1) eV, where 
e=t.V/V denotes the relative change of the volume. 

The X 5 ~ X 4' transition contributes only a small 
fraction of the total E2 at 3.9 eV. It is impossible to get 
reliable values of dE2/d(lLw) appropriate to this fraction 
of E2. We do not attempt to calculate the shear-strain 
deformation potential of this transition; instead, we 
simply show that it will produce a negative lVll - W12 

below the energy of the critical point. The level X/ 
has free-electron character; it does not interact with 
the d bands because of symmetry (Fig. 9). Its eigen
value is k2 (k= X, in atomic units), neglecting a small 
pseudopotential form faclor. The shear coefficient for 
k perpendicular to z (stress axis, see Table I) is a(lnk2)/ 

ae .. = + 1. The shear coefficient of the X5 level, which 
has tight binding character, will be small compared to 
that of k2• Thus the sign of the change in Xl-X5 is 
given by the change of P. For light polarized parallel 
to z only those transitions of X5 ~ X.' with k per
pendicular to z contribute according to the selection 
rules (these are strictly valid only for the X point and 
zero spin-orbit splitting, but they will huld approxi
mately). Thus, the 1111 c.p. shilts to higher energies for 
positive c .. , producing negative values for Wll - TV12 
below 4.0 eV, as observed. 

The FS ~ Ll transition has been found to be re
sponsible)or the large values of W •• and Wll+2W12 

at 4.3 e V and for the edge in E2 at this energy. Because 
. of the strong localization of this transition the deforma
tion potentials derived from Wi; will be close to those 
of the transition with k=L. Transitions connected with 
Ml and M2 singularities in J which are not modified 
by the Fermi energy will behave differently, because 
they are only moderately localized, as discussed in the 
Introduction. The deformation potentials of transi
tions with different k will generally be different. Indeed, 
Brust and Liu31 have shown recently that the defonna
tion potential of the transition with k of the saddlepoint 
and the energy shilt per strain of the corresponding 
structure in the optical spectrum can differ significantly. 

The background slope of E2 at 4.3 eV due to transi
tions other than FS ~ Ll cannot be determined 

31 D. Brust and L. Liu, Phys. Rev. 154, 647 (1967). 

rigorously. We use the slope of E2 at 4.05 eV, which i, 
-0.5/ eV (Fig. 12). The similarity of Wll+2W12 and 
IV 44 around 4.3 e V shows that changes of M and J which 
can be large for shear strain only do not contribult: 
significantly to W 4(. Furthermore, IV i; has its maximw'. 
where the slope of E2 is largest and where the contribu 
tion of this transition to the total E2 is still small. I i 
present, changes of J and M would have the largc>l 
effect on IV 44 at the maximum contribution of L 2' --7 1'1 
to E2. Thus neglecting changes of 111 and J is justitied 
here. This also justifies the analysis of the previou, 
sections, where we considered the effect of shear slrain 
on the k degeneracy only. 

Without spin, the L2' ~ Ll selection rules a l C 

],,[ •. ~O, M".=M".=O, where k=L is parallel lu 
z' (z' = stress axis, Table I). With spin, these rules wi!! 
still be approximately valid (I M., 12« 1 M %.1 2). T il t' 
selection rules for k~L will be different from the one, 
given above, even without spin. The strong localization 
of the transitions in It space assures that this devia ti(l!1 
is small. The shear coefficient of the transition will I ; 
calculated neglecting the deviations from the selecliu:, 
rules given above. 

The deformation potentials delermined from c\ 
periment and evaluated using the assumption di
cllssed above are a(L1- Ep)/ ae= (-9.6±1.5) eV <1 1< 

a(L1-Ep)/acll.=(-72±12) eV for k parallel [IIi : 
The largest uncertainty in these coefficients is due lo 
the background slope in E2 (the values given earlier ': 
are 8% higher because the background slope used II'. 

-0.3/ eV instead of -0.5/ eV used here) . 

Theory of the Deformation Potentials at L 

The theoretical estimate of the deformation pol' l. 
tials of the FS ~ Ll transitions given earlier12 neglecll ' 
the plane-wave admixture to the wave function of II 

d state LId, i.e., d-sp hybridization. The treatment (11!' 
lined below includes the hybridization. 

We use the model Hamiltonian developed I 
Saffren,32 Ehrenreich and co-workers,33 and :M t1clk r" 

32 M. Saffren, in The Fermi Smjace, edited by W. A. ](arr: 
and M. B. Webb Oohn Wiley & Sons, Inc., New York, 1'1" 
p. 341. . 

n L. Hodges and H. Ehrenreich, Phys. Letters 10, 20J (I Q;'~ . 
L. Hodges, H. Ehrenreich, and N. D. Lang, Phys, Rev. .-
505 (1966). 

#4 F. M. Mueller, Phys. Rev. 153, 659 (1967). 
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TAll['E VI. Deformation potentials (in eV) of 
the transitions at L. 

~~~==========~====================== 

Experiment 
Present 

Theory 
Present -" !vrOlation 

':. :entials paper Zallen" paper DFJb Jacobs· 

. -::E,)/iJev' 
~ _£,)/iJed 
:~_ LI·)/iJe 

,:.. - U)/iJe 

-72 ±12 -56 
- 9.6±L5 9.7±2.0 
- 1.l±0.1 Absolute 

value < 1.3 

.0 rence47. 
,~(:(rence 43 . 
. ~clcrence 48. 
, ,< .lV/ V is the reia ti" e change of the volume V. 

-5.1 
-0.8 

-5.9 -4.1 

. the form given by Cohen and Mueller.3C, Using sym
<rized plane waves as well as symmetrized tight
, ding functions, we can write down the eigenvalues of 
:' and of L 3" ,1 immediately: 

(7) 

1.3
1,,,= Ed+1I'- 0±[(1I'-0)2+4.5( - cr+0)2JI/2. (8) 

"~e vector k is that of the L point, V 111 is a pselldo
, :ential form factor, Ed gives the position of the d 
~lds above r 1, and cr= (ddcr) , 11'= (dd1l') , and 0= (ddo) 

t:e the two-center tight-binding integrals defined by 
lcr and Koster.36 The two 1.1 levels are obtained 

im the secular equation 

(9) I
H<t><t>-E Ii<t>d 1=0 . 
lId<\> . IIdd-E 

, ~c function d is a tight-binding Bloch sum sym
d rized to Ll and <P is a plane wave symmetrized to 
I and orthogonalized to d, 

<P= (cp-bdd)/ C . 

, :lC abbreviations used in Eq. (10) are 

'1'= (2/V)1/2 cos(k · r) , 

bd=('P/ d), 

C2=I-bi. 

[he matrix elements of Eq. (9) are 

F/dd=Ed-4(1I'-0) , 

(10) 

(11) 

(12) 

(13) 

(14) 

F/4>d= (H"d-bdHdd)/ C, (lS) 

114>4>= (k2+ Vlll+ V flip(2)+bd2Hdd- 2bdH ipd)/ C2 . (16) 

'I\'e calculated bd and the tight-binding integrals using 
'he atomic wave function and the atomic potential 
llculated by Hartree and Hartree37 and parametrized -11 M. H. Cohen and F. M. Mueller, in 'Atomic and Electronic 
:: ~'ture of Metals (American Society for Metals, Metals Park, 
''110, 1967), p. 61. 
:: J. C. SLater and G. F. Koster, Phys. Rev. 9.1, 1498 (195-i). 

\I- D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London) 
~7, 490 (1936). 

eV 
(0) 

:~.~.'~:' " .~~pe·:i'~~~;f.'~ 
.... ........ .. .. ... ......... ... 

- 20 

°0~~----0~~~--~W~--~1.5~ · 0:----4~---+8 ----1~2~ 

abd/aeyz m 

FIG. 13. The dependence of the shear strain deformation 
potential oLt/iJev, on the strain coefficient of the orthogonality 
integral bd [part (a) of the figure] and on the strain coefficient of 
the hybridization H~d [part (b) of the figure]. The value iJbd/ 
oe.,=0.73 was calculated using atomic d functions. 

by Fletcher and Wohlfahrth,38 The numerical values are 
given in Table V. The tight binding integrals agree 
with those calculated by Fletcher and Wohlfahrth. 
The value of the orthogonalization integral bd given 
by Mueller34 is 16% lower than the one reported here. 

A first-principles calculation of the quantities Ed, 
H ipd, and 6. V ipip (2) is extremely difficult and will not be 
attempted here. Instead, we determine them from the 
eigenvalues of Fig. 9,13,14 using the calculated values of 
bd and of the tigh t-binding integrals. In particular, the 
value of the hybridiza.tion integral II ipd is evaluated 
from the difference between Hdd (the eigenvalue of LId, 
neglecting hybridization) and Lid. Ed is calculated 
from L 3- r 1 using Eq. (8). (L 3"- L31 given by this 
equation agrees with the value taken from Fig. 9, One 
would expect this, since these bands have no inter
action with the sp bands.) The form factor Vlll given 
by Eq. (7) is also taken from the calculated band 
structure. 

6. V"ip(2) is the matrix element of the crystal potential, 
calculated with the 1= 2 component of cp. It was in
troduced in the model Hamiltonian35 following a sugges
tion by Heine.39 Its numerical value (calculated using 
the L 1-L1d gap of Fig. 9) is small, namely , -0.75 eV. 
Neglecting 6.Vip,, (2) gives LI-L1d=9.85 eV using Eq. 
(9), which is only 0.60 eV higher than the value of 
Fig. 9. 6. V ipip (2) will be neglected in the following. The 
zero-strain values of Vlll, H ipd , and Ed are listed in 
Table V. 

The tight-binding parameters for changed nearest
neighbor distances were calculated in the same way as 
for the distance in the unstrained crystal. For trigonal 
distortion (Table I) and levels with Ii parallel to [111J, 
the strain coefficient of H dd is (R is the nearest-neighbor 

38 G. C. Fletcher and E. P. Wohlfahrth, PhiL Mag, 42, 106 
(1951) . 

n V. Heine, Phys. Rev. 153, 673 (1967). 
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eV ··+ ············(Oi ··· ·· ········ 
. ·Experimenl·-·- · .-

-10 
........ ..... . ................ 

41 -8 
ro -'9> 6 
-J -

I-e -4 e = 6VIV; a(ln Edl/ae = -1.2 
ro 

-2 
a(ln H!I'dl ann bd l 
-a-k- = -a-k-

" , 
ka(ln bdl/a(3k) = 0.33 

--: a(ln Ed)/ae = -1.2 
acln H1tjl/ak = na(ln bdl/c3k 

---: a(ln Edl/ae = -1.2'" 
a(lnH!fdl/ak = a(lnbd'/ak 

°0!---::a.L,2----:0:L.4----:0:l::.6:-' 0 0.5 1.0 1.5 2.0 

ka(ln bdl/a(3kl n 

FIG. 14. The dependence of the volume deformation potential 
iJ(LI-L3u)/iJe on the strain coefficients of bd and II ..,I plotted in 
a way similar to that of Fig. 13. In addition, the dependence on 
the volume coefficient of Ed is given [dashed curve in part (b) 
of the figure] . 

distance) 

aH dd/ aell , = - [12u- 8"lr+48 
+ Ra(3u+4"lr+5o)/ aR]. (17) 

The strain dependence of Vlll is calculated using a sim
ple model potentia1.40 It is constructed from a bare ion 
potential which is zero inside the core region (r<rc) 
and equal to the Coulomb potential of a single positive 
charge outside (- 2/ r in atomic units). Its Fourier 
transform is divided by Eq , the static Hartree dielectric 
function for free electrons,41 to give the form factor 

(18) 

where n is the volume of the unit cell. The value of r c 

(0.23 of the nearest-neighbor distance) is determined 
by Vlll of Table V; it is regarded as a constant in cal
culating the strain coefficients of V 111 from Eq. (18). 
The values of the overlap integral bd for the deformed 
crystal are calculated in the same way as bd for zero 
strain. All strain coefficients discussed above are listed 
in Table V. 

The calculation of the deformation potentials re
quires additional knowledge, namely, the strain coef
ficients of H"d, Ed, and EF. The effect of pure trigonal 
shear strain will be considered first. In this case, there 
is no change of Ed and EF linear in the strain com
ponents: The center of gravity of originally degenerate 
levels remains unchanged to first order; this causes Ed 
and EF to be constant, too. As a consequence, 

(19) 

A rigorous calculation of aH "d/ aellz would be even more 
difficult than the calculation of H"d itself. We therefore 
simply assume the relative change of bd and H"d to 

(0 N. W. Ashcroft, Phys. Letters 23, 48 (1966). 
U W. A. Harrison, in Frolltiers ill Physics, edited by D. Pines 

CW. A. Benjamin, Inc., New York, 1966), p. 49. 

TABLE VII. Volume coefficients of the Fermi energy and of l i ' 
position of the d bands. . 

Volume 
coefficien ts' 

Present 
paper 

-1.2±0.5 
-1.1±0.3 

Derived from 
dHvAb DFJ c 

-0.85 
-0.73 -0.86 

v.· f, is the zero of energy and. = d V IV is the relative change of the vol,, !:,> 

b Reference 50. 
• Reference 43. 

be identical, 

(2lJ l 

Equation (20) completes the list of strain coefficicn , 
which are needed to calculate aLI/ (Je llz ' Its numericd 
value (listed in Table VI) is 24% lower than the O ll~ 
determined from the experiments. 

Figure 13 illustrates how the theoretical coefficicll: 
aLI/ aellz changes when changing the assumptiol. , 
specified above. Figure 13(a) gives the dependence 0:. 

abd/ aellz assuming Eq. (20) to be valid. Figure 13(h 
shows the variation with a(lnH <;d)/ ae llz using abd/ i),-, : 
=0.73 as calculated from atomic d functions.37 

Two volume deformation potentials a(EF - L3"),'(l,· 
(determined from the edge at: 2.1 eV) and a(LI-EF ).'," 

(from the edge at 4.3 eV) are used to calculate 11:,· 
volume coefficients of Ed and EF relative to rl. 1'11: · 
can be done more accurately than the large experimcn t ! 
error of the LI-EF deformation potential might su,:· 
gest. Recalling that the error is due to the uncertainly i:. 
the appropriate slope of E2, we note that the reb til , 
deviation of the experinlental value from the I rI. 

value is approximately equal for the volume and ll. 
shear strain deformation potentials. 

Summing the two experimental volume deformat i .. : 
potentials eliminates E F ; the sum a(L1-L 3u)/ ac c:' 

be used to determine a (lnEd )/ ae. In doing so, I',' 

always treat the normalization factor n-1/ 2 of bd ai , : 

H"d explicitly and assume 

(21 

which is the equivalent of Eq. (20). There are scw: 
choices on how to proceed. One possibility is to usc t! 

coefficient a (lnbd)/ ak as calculated with a.tomic 
functions and a value for a(L I - L3u )/ ae which is 2;' 
smaller than the experimental one. Another ch .. : 
would be to increase a(lnbd)/ aellz until the thcorcl i . 

value of aLJ aellz matches the experimental onc [1 .. 
13(a)], to increase a(lnbd)/ ak by the same facto r, .. ' 
to use the experimental value of a(LI-L3u)/ iJc. '1 '. 
volume coefficient of Ed turns out to be the saJl ll' 
both cases, proving that it does not depend drastic:" 
on the strain coefficients of bd and H "d. Its numer: 
value is listed in Table VII. In Fig. 14, a(LI-r J" ' ,; 
is plotted as a function of the strain coefficients of ' 
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\' than the large experimen: 
.11ation potential might SL 

'r is due to the uncertainty ; 
~, we note that the relati" 
ental value from the t r~ 
ual for the volume and t' 
,otentials. 
mental volume deformati, 
.he sum D(L1-La")/ De c. 
nEd)/ ae. In doing so, " 
lion factor 0-1{2 of bd a~ 

~d E1 I'd in a fashion equivalent to that of Fig. 13. The 
~cDCndence on a (lnEd)/ae is also included [Fig. (14(b)J. 

In calculating the volume coefficient of EF , we use 
~~ experimental value of a(Ep - L 3")/ ae, the volume 
..:J1icient of Ed as calculated above, and Eq. (7) , to
~lher with the strain coefficients of the tight binding 
. rameters (Table V) . The resulting value of a(lnEp )/ De 
.> given in Table VII. 

Assuming no strain dependence of bd and H I'd at all 
txcept for 0-1/2), we find the theoretical values of 
JLJ Dell' and a(L1- La")/ ae to be 62 and 50% of the 
.vrresponding experimental numbers [Eqs. 13(a) and 
H(a)], respectively. This part of the deformation 
"vlentials is mainly due to the strain dependence of k2 

~~d, for hydrostatic deformation, to the strain depen
:cnce of 0-1/2. 

Discussion 

The preceding analysis dealt with the observed 
.: ructure in W ij • A legitimate question is whether the 
:aergy bands predict more structure than actually 
,bserved. Pure shear strain will produce a significant 
.!lange in E2 only for strongly or moderately localized 
:,ansitions. Moreover, even if the transitions are 
.. l(alized but have k vectors of low symmetry (i.e., 
~.cither parallel to [OOlJ nor to [111J), there will be a 
,:;;nal for both trigonal and tetragonal strain (Table 
I I) and the signal will tend to be small. Looking for 

:'iCalized tl. , X, A, and L singularities only, we expect 
:he X5 -+ X 4' and the FS -+ Ll transitions to show up 
~clween 2 and 5.5 eV, as they do, i.e., the measure
~lcnts are complete. On the other hand, hydrostatic 
·'rain will produce a signal for nonlocalized transitions 
;,lO. Experimental examples are the maximum in 
lI' ll+2W12 at 2.1 eVand the shoulder at 4.8 eV. 

The energies of the identified transitions agree to 
., ithin ±0.1 eV with the corresponding difference of 
:he eigenvalues, calculated with Chodorow's26 potential. 
Band-structure calculations based on potentials dil-

I :crent from that of Chodorow deviate from experiment 
, hyas much as 1.5 eV. Table VIn compares the energies 

(21 i of the experimentally observed transitions with pre-
Eq. (20) . There are sever dic tions of different calculations.13,14.42-44 There are 
')ne possibility is to use tl ;, her experimental results which agree most closely 
calculated with atomic ·.\-ith the result of the E(k) calculation based on 
(L1- La")/ae which is 2it f'hodorow's potential, the most important of which is 
ntal one. Another cbo; !he area of the neck, measured with the de Haas-van 

.J/Dell• until the theoretil .\Iphen effect. The experimental numbers which were 
.hc experimental one [ f :~-cxamined recently45.46 agree with the calcula-
' k by the same factor, a: ~ to within 11%. For calculations with other 
'ue of a(L1-La")/ae. Ti <' J . .' S. Faulkner, H. L . Davis, and H. W. Joy, Phys. Rev. 161, 
rns out to be the samc . '6 (1967). 

;oes not depend drastic:!!" " H. L. Davis, J. S. Faulkner, and H. W. Joy, Phys. Rev. 167 
"Ji (1968). 

bd and H~d. Its numeric "E. C. Snow and J. T. Waber, Phys. Rev. 157, 570 (1967) . 
In Fig. 14, a(L1-La")." "J. P. Jan and M. Templeton, Phys. Rev. 161, 556 (1967). 
he strain coefficients of . t~' W. J. O'Sullivan and J. W. Schriber, Cryogenics 7, 118 

67). 

TABLE VIII. Energies of observed transitions in eV. 

Energy Experiment 

EF-L." 2.! ±O.! 
X.'-X, 4.0 ±O.! 
Ll-EF 4.1S±0.1 

a References 13 and 14. 
b References 13 . 
• References 42 and 43. 
d Table II of Ref. 44. 

Chodorowal-dependent b Watson. 
Self-

consistentd 

2.1 2.3 1.6 3.2 
4.0 4.7 3.1 S.S 
4.0 5.15 3.9 

potentials one might not get contact of the Fermi sur
face with the [111J face of the BZ at all. 42 

Thus, the experimental evidence for the superiority 
of the band structure calculated with Chodorow's 
potential is overwhelming. However, there is no 
theoretical formalism known today which tells us that 
we have to choose just this potential. For example, a 
self-consistent augmented-plane-wave calculation as 
the one reported by Snow and Waber44 will agree with 
the experimental results once the exchange term is 
properly adjusted, but there is no theoretical justifica
tion for such an adjustment. 

Zallen47 measured the change of the reflectance with 
volume applying hydrostatic pressure directly to the 
crystal. His results are also listed in Table VI. He 
could quote only a lower limit for the deformation 
potential of the 2.1-edge. Our method is much more 
sensitive here because the large slope of the edge pro
duces a large tl.e2 even for the small deformation poten
tial. The two experiments are of comparable accuracy 
in terms of energy shifts for the 4.3-eV edge. The 
modulation experiment lost part of its advantage here 
because the slope is smaller and the slope of the back
ground unknown. The results of the two measurements 
agree within the e~ .. perimental error. 

Objections might be raised against the procedure 
used here to calculate the deformation potentials. In 
particular, one ought to construct the tight-binding 
functions d from resonance functions rather than from 
atomic orbitals, as discussed by Heine. a9 However, 
this would have little effect on the d-sp overlap bd, be
cause the largest contribution to this integral comes 
from regions where the resonance function and the 
atomic d function are identical (the maximum of the 
integrand lies at 0.53 of the nearest-neighbor distance). 
The calculated strain coefficients of the tight-binding 
integrals u, 7[', 8 (Table V) are higher than predicted 
by Heine's theory, which would give Ra(ln[1)/ aR=-5 
(f3= u, 7[', 8), but their influence on the deformation po
tentials is small. Furthermore, it is not clear how the 
theory of Heine has to be modified if one abandons the 
muffin-tin approach, i.e., for overlapping potentials. 

Two other calculations of the hydrostatic deforma.
tion potentials are known.43.48 Both are listed in 

t7 R. Zallen, in COllOqltiulIl on the 0 plical Properties and tlte 
ElectrO/tic Strltcture of 1>1 elals alld Alloys, Paris 1965, edited by 
F. Abeles (North-Holland Publishing Co., Amsterdam, 1(66), 
p.l64. 

43 R. Jacobs (private communication) . 
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Table V. The agreement between the measured values 
and the ones calculated by Davis et al. 43 would probably 
improve if Chodorow's potential were used instead of 
the one derived from the wave functions given by 
Watson.49 The strain coefficients of Ed and EF given 
in Ref. 43 are listed in Table VII. 

Using the de Haas-van Alphen effect, TempletonSO 

measured the change of the neck area with volume and 
found a(lnA n )jae=j(4.2±O.2). This infomlation can 
be used to approximately calculate the strain coefficient 
of EF • It is determined by Eqs. (7) and (18), neglecting 
the change of the effective mass of the L 2' - Q_ band. 
The numerical value of a (lnEp )/ ae listed in Table VII 
is about 34% lower than the one derived from the 
optical experiments. The agreement will be closer if 
the change of the effective mass is taken into account: 
Decreasing the volume (e>O) decreases the d-sp inter
action; the L 2' - Q_ band will get closer to the free
electron parabola (Fig. 9). Thus, including the change 
of the effective mass, the same change of the neck area 
requires a larger value of 1 a(lnEF )/ ae I. 

The f::"R/ R signal measured with strained polycrystal
line filmss,ll shows some resemblance to the fUllctional 
dependence of the hydrostatic effect (Qll+2Q12 in Fig. 
7), probably with some admixture of the effect pro
duced by trigonal shear strain (Q44). Indeed, one wouId 
expect the f::"R/ R signal measured with strained poly
crystalline filn1S to be a linear combination of the 
functions Qij, provided the signal 'is due to the change 
of the reflectance of the material under study. The 
function Qll-Q12 is small for Cu and will therefore 
contribute but slightly to f::"R/ R measured with poly
crystalline films. However, the function f::"R, R given 
in Refs. 8 and 11 is not a simple linear combination of 
Qll+2Ql~ and QH. A positive function which increases 
with energy has to be added to reproduce f::"R/ R as 
presented in Refs. 8 and 11. The maximum value of this 
function is of the same order of magnitude as the maxi
mum value in f::"R/ R. We believe that this positive 
function is identical with an error signal produced, e.g., 
by the mechanical motion of the fi1rn. We also found 
such an error signal, if present, to be strongly energy
dependent. The functions Qij presented here, which are 
characteristic of electropolished single crystals have 
zero values below 2 eV. The signal below 2 eVobserved 
using polycrystalline films8•u is probably due to the 
error signal only. 

The FS ---+ Ll transition was also identified in the 
photo emission measurements of Berglund and Spicer. 19 

4' R. E. Watson, Phys, Rev. 119, 1934 (1960). 
601. M. Templeton, Proc. Roy. Soc. (London) A292, 413 

(1966). 

The energy determined from this experiment is ident ic::: 
with the one reported here. The authors introduccd tl. 
concept of nondirect transitions in the analysis of thti: 
data, i.e., transitions which do not conserve k direct!;· 
The term "indirect transitions" was avoided bCGll'; 
the authors wanted to include the possibility that P;;l' 
cesses different from the usual phonon-assisted tran,:. 
tions are important. The theoretical interpretalion I: 
these nondirect transitions is still under discussion ($l~ 
e.g., Refs. 51 and 52). Berglund and Spicer conduci, . 
from their data that the optical absorption in ell :. 
dominated by nondirect transitions except for a \'t.'[ 

small contribution (below 10%) of the direct tran:: 
tions at L mentioned above. 

It is evident from the results presented here th .. 
direct transitions must be important. The structur,' : 
Wu-lV12 which we identified with the XS -7 .\' \ 

transition may serve as an example. One might try t, 

explain it as caused by nondirect transitions sta r t ir,~ 

from various initial states to the same final state.\'. 
The k degeneracy of X 4' will be lifted by tetragonal sh L' .. 
strain. This might cause the obscrved TVll-lV12. Ifo" 
ever, the selection rules for nondirect transitions IIi', 

generally differ from those for direct transi tions, Ti 
assumption 1.M~12= IM~12= IM.1 2 might be adequ:!" 
for such an averaging process. In this case, there \\'01: ' , 

be no first-order change of E~ at all, i.e., TVll - TV12 \\'o t:~ 1 

be zero, in contrast to the experimental result repon • . 
here. 

The sign (X transition) as well as the magn i l l: ' ~ 
(L transition) of the observed energy shift is consi~ tL':' 
with the selection ruIes for direct transitions. Thu" t' 
nondirect transitions must have selection rules iden t j, . 

to those for direct transitions in oreler to be campat jl,' 
with our measurements. 

The photoemission measurements l9 on eu can :\' 
be explained if one assumes that the absorp tion abfl'o 
2 eV is dominated by direct interbanel. transitions .. ;·' I' 
more natural to discuss the optical absorption in ; I . 

region in terms of direct transitions, because thi:; 1': 
cess is well established theoretically and accoun ts i 
all details of the experiments persented in this p,q" . 
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